32 research outputs found

    Kernel-based Image Reconstruction from Scattered Radon Data

    Get PDF
    Computerized tomography requires suitable numerical methods for the approximation of a bivariate function f from a finite set of discrete Radon data, each of whose data samples represents one line integral of f . In standard reconstruction methods, specific assumptions concerning the geometry of the Radon lines are usually made. In relevant applications of image reconstruction, however, such assumptions are often too restrictive. In this case, one would rather prefer to work with reconstruction methods allowing for arbitrary distributions of scattered Radon lines. This paper proposes a novel image reconstruction method for scattered Radon data, which combines kernel-based scattered data approximation with a well-adapted regularization of the Radon transform. This results in a very flexible numerical algorithm for image reconstruction, which works for arbitrary distributions of Radon lines. This is in contrast to the classical filtered back projection, which essentially relies on a regular distribution of the Radon lines, e.g. parallel beam geometry. The good performance of the kernel-based image reconstruction method is illustrated by numerical examples and comparisons

    Multiscale Centerline Extraction Based on Regression and Projection onto the Set of Elongated Structures

    Get PDF
    Automatically extracting linear structures from images is a fundamental low-level vision problem with numerous applications in different domains. Centerline detection and radial estimation are the first crucial steps in most Computer Vision pipelines aiming to reconstruct linear structures. Existing techniques rely either on hand-crafted filters, designed to respond to ideal profiles of the linear structure, or on classification-based approaches, which automatically learn to detect centerline points from data. Hand-crafted methods are the most accurate when the content of the image fulfills the ideal model they rely on. However, they lose accuracy in the presence of noise or when the linear structures are irregular and deviate from the ideal case. Machine learning techniques can alleviate this problem. However, they are mainly based on a classification framework. In this thesis, we show that classification is not the best formalism to solve the centerline detection problem. In fact, since the appearance of a centerline point is very similar to the points immediately next to it, the output of a classifier trained to detect centerlines presents low localization accuracy and double responses on the body of the linear structure. To solve this problem, we propose a regression-based formulation for centerline detection. We rely on the distance transform of the centerlines to automatically learn a function whose local maxima correspond to centerline points. The output of our method can be used to directly estimate the location of the centerline, by a simple Non-Maximum Suppression operation, or it can be used as input to a tracing pipeline to reconstruct the graph of the linear structure. In both cases, our method gives more accurate results than state-of-the-art techniques on challenging 2D and 3D datasets. Our method relies on features extracted by means of convolutional filters. In order to process large amount of data efficiently, we introduce a general filter bank approximation scheme. In particular, we show that a generic filter bank can be approximated by a linear combination of a smaller set of separable filters. Thanks to this method, we can greatly reduce the computation time of the convolutions, without loss of accuracy. Our approach is general, and we demonstrate its effectiveness by applying it to different Computer Vision problems, such as linear structure detection and image classification with Convolutional Neural Networks. We further improve our regression-based method for centerline detection by taking advantage of contextual image information. We adopt a multiscale iterative regression approach to efficiently include a large image context in our algorithm. Compared to previous approaches, we use context both in the spatial domain and in the radial one. In this way, our method is also able to return an accurate estimation of the radii of the linear structures. The idea of using regression can also be beneficial for solving other related Computer Vision problems. For example, we show an improvement compared to previous works when applying it to boundary and membrane detection. Finally, we focus on the particular geometric properties of the linear structures. We observe that most methods for detecting them treat each pixel independently and do not model the strong relation that exists between neighboring pixels. As a consequence, their output is geometrically inconsistent. In this thesis, we address this problem by considering the projection of the score map returned by our regressor onto the set of all geometrically admissible ground truth images. We propose an efficient patch-wise approximation scheme to compute the projection. Moreover, we provide conditions under which the projection is exact. We demonstrate the advantage of our method by applying it to four different problems

    Long-Lived Accurate Keypoints in Event Streams

    Full text link
    We present a novel end-to-end approach to keypoint detection and tracking in an event stream that provides better precision and much longer keypoint tracks than previous methods. This is made possible by two contributions working together. First, we propose a simple procedure to generate stable keypoint labels, which we use to train a recurrent architecture. This training data results in detections that are very consistent over time. Moreover, we observe that previous methods for keypoint detection work on a representation (such as the time surface) that integrates events over a period of time. Since this integration is required, we claim it is better to predict the keypoints' trajectories for the time period rather than single locations, as done in previous approaches. We predict these trajectories in the form of a series of heatmaps for the integration time period. This improves the keypoint localization. Our architecture can also be kept very simple, which results in very fast inference times. We demonstrate our approach on the HVGA ATIS Corner dataset as well as "The Event-Camera Dataset and Simulator" dataset, and show it results in keypoint tracks that are three times longer and nearly twice as accurate as the best previous state-of-the-art methods. We believe our approach can be generalized to other event-based camera problems, and we release our source code to encourage other authors to explore it

    Multiscale Centerline Detection by Learning a Scale-Space Distance Transform

    Get PDF
    We propose a robust and accurate method to extract the centerlines and scale of tubular structures in 2D images and 3D volumes. Existing techniques rely either on filters designed to respond to ideal cylindrical structures, which lose accuracy when the linear structures become very irregular, or on classification, which is inaccurate because locations on centerlines and locations immediately next to them are extremely difficult to distinguish. We solve this problem by reformulating centerline detection in terms of a regression problem. We first train regressors to return the distances to the closest centerline in scale-space, and we apply them to the input images or volumes. The centerlines and the corresponding scale then correspond to the regressors local maxima, which can be easily identified. We show that our method outperforms state-of-the-art techniques for various 2D and 3D datasets

    Learning Separable Filters

    Get PDF
    Learning filters to produce sparse image representations in terms of overcomplete dictionaries has emerged as a powerful way to create image features for many different purposes. Unfortunately, these filters are usually both nu-merous and non-separable, making their use computation-ally expensive. In this paper, we show that such filters can be computed as linear combinations of a smaller number of separable ones, thus greatly reducing the computational complexity at no cost in terms of performance. This makes filter learning approaches practical even for large images or 3D volumes, and we show that we significantly outperform state-of-the-art methods on the linear structure extraction task, in terms of both accuracy and speed. Moreover, our approach is gen-eral and can be used on generic filter banks to reduce the complexity of the convolutions. 1

    Multiscale Centerline Detection

    Get PDF
    Finding the centerline and estimating the radius of linear structures is a critical first step in many applications, ranging from road delineation in 2D aerial images to modeling blood vessels, lung bronchi, and dendritic arbors in 3D biomedical image stacks. Existing techniques rely either on filters designed to respond to ideal cylindrical structures or on classification techniques. The former tend to become unreliable when the linear structures are very irregular while the latter often has difficulties distinguishing centerline locations from neighboring ones, thus losing accuracy. We solve this problem by reformulating centerline detection in terms of a \emph{regression} problem. We first train regressors to return the distances to the closest centerline in scale-space, and we apply them to the input images or volumes. The centerlines and the corresponding scale then correspond to the regressors local maxima, which can be easily identified. We show that our method outperforms state-of-the-art techniques for various 2D and 3D datasets. Moreover, our approach is very generic and also performs well on contour detection. We show an improvement above recent contour detection algorithms on the BSDS500 dataset
    corecore